logo

Journal

 

1.
How do land practices affect methane emissions from tropical peat ecosystems?
Wong, G.X., Hirata, R., Hirano, T., Kiew, F., Aeries, E.B., Musin, K.K., Waili, J.W., Lo. K.S. and Melling, L. - 2020
Agricultural and Forest Meteorology, 282.
PDF
   
2.
Variations in the rate of accumulation and chemical structure of soil organic matter in a coastal peatland in Sarawak, Malaysia.
Sangok, F.E., Sugiura, Y., Maie, N., Melling, L., Nakamura, T., Ikeya, K. and Watanabe, A. - 2020
CATENA, 184
PDF
   
3.
Carbon dioxide and methane emissions in an undrained tropical peat swamp forest.
Ishikura, K., Hirata, R., Hirano, T., Okimoto, Y., Wong, G.X., Melling, L., Aeries, E.B., Kiew, F., Lo, K.S., Musin, K.K., Waili, J.W. and Ishii, Y. - 2019
Ecosystems, 22 (164).
PDF
   
4.
FLUXNET-CH4 synthesis activity: Objectives, Observations, and Future Directions.
Knox, S.H., Jackson, R.B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J.G., Saunois, M., Papale, D., Chu, H., Keenan, T., Baldocchi, D., Mammarella, I., Aurela, M., Bohrer, G., Campbell, D., Cescatti, A., Chamberlain, S., Chen, J., Dengel, S., Desai, A.R., Euskirchen, E., Friborg, T., Goeckede, M., Heimann, M., Helbig, M., Kang, M., Klatt, J., Kraus, K.W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T.H., Nilsson, M.B., Niu, S., Noormets, A., Oechel, W.C., Peichl, M., Peltola, O., Reba, M.L., Runkle, B.R.K., Ryu, Y., Sachs, T., Schäfer, K.V.R., Shurpali, N., Sonnentag, O., Tang, A.C.I., Vesala, T., Ward, E.J., Windham-Myers, L.and Zona, D. - 2019
Bulletin of the American Meteorological Society.
PDF
   
5.
Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions.
Midot, F., Lau, S.Y.L., Wong, W.C., Tung, H.J., Yap, M.L., Lo, M.L., Jee, S.M., Dom, S.P. and Melling, L. - 2019
Microorganisms, 7(10), 464.
PDF
   
6.
Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland.
Chaddy, A., Melling, L., Ishikura, K. and Hatano, R. - 2019
Agriculture,9(10), 213.
PDF
   
7.
The exchange of water and energy between a tropical peat forest and the atmosphere: Seasonal trends and comparison against other tropical rainforests.
Tang, A.C.I., Stoy, P.C., Hirata, R., Musin, K.K., Aeries, E.B., Shimizu, M., Waili, J.W. and Melling, L. - 2019
Science of the Total Environment, 683, 166-174.
PDF
   
8.
Association of growth and hollow stem development in Shorea albida trees in a tropical peat swamp forest in Sarawak, Malaysia
Monda, Y., Kiyono, Y., Chaddy, A., Damian, C., and Melling, L. - 2018
Trees, 32(5), 1357-1364.
PDF
   
9.
Eddy covariance measurement of methane flux at a tropical peat forest in Sarawak, Malaysian Borneo.
Tang, A.C.I., Stoy, P.C., Hirata, R., Musin, K.K., Aeries, E.B., Waili, J.W., and Melling, L. - 2018
Geophysical Research Letter, 45(9), 4390-4399.
PDF
   
10.
Micrometeorological measurement of methane flux above a tropical peat swamp forests.
Wong, G.X., Hirata, R., Hirano, T., Kiew, F., Aeries, E.B., Musin, K.K., Waili, J.W., Lo, K.S., and Melling, L. - 2018
Agricultural and Forest Meteorology, 256, 353-361.
PDF
   
11.
CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia.
Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Lo, K.S., Shimizu, M., and Melling, L. - 2018
Agricultural and Forest Meteorology,248, 494-501.
PDF
   
12.
Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat.
Ishikura, K., Hirano, T., Okimoto, Y., Hirata, R., Kiew, F., Melling, L., Aeries, E.B., Lo, K.S., Musin, K.K., Waili, J.W., Wong, G.X. and Ishii, Y. - 2018
Agriculture, Ecosystems and Environment, 254, 202-212.
PDF
   
13.
Characterization of dissolved organic matter in river water flowing through temperate and tropical peatland based on size exclusion chromatography and fluorescence spectrometry.
Tsutsuki, K., Yoshida, E., Maie, N., Melling, L. and Watanabe, A. - 2018
Humic Substances Research, 14(1), 19-32.
PDF
   
14.
Dynamic of humic and non-humic substances in estuaries of coastal wetlands.
Watanabe, A., Sugiura, Y., Maie, N., Melling, L., Sudid, D. and Tsutsuki, K. - 2018
Humic Substances Research, 14(1), 7-17.
PDF
   
15.
Influence of humic and non-humic substances in estuaries of coastal wetlands.
Maie, N., Maeda, M., Murouchi, A., Melling, L., Takamatsu, R., Sangok, F., Kakino, W., Tanji, H. and Watanabe, A. - 2018
Humic Substances Research
PDF
   
16.
Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation.
Sangok, F.E., Maie, N., Melling, L., and Watanabe, A. - 2017
Science of the Total Environment, 587, 381-368.
PDF
   
17.
Allometric equations considering the influence of hollow trees: A case study for tropical peat swamp forest in Sarawak.
Monda, Y., Kiyono, Y., Melling, L., Damian, C., and Chaddy, A. - 2015
TROPICS,24(1), 11-22.
PDF
   
18.
Destructive sampling method for estimating the biomass of African oil palm (Elaesis guineensis) plantations on tropical peatland.
Kiyono, Y., Monda, Y., Toriyama, J., Chaddy, A., Goh, K.J., and Melling, L.- 2015
Bulletin of Forestry and Forest Products Research Institute (FFPRI), 14(3), 147-157
PDF
   
19.
Correlations between mineral nitrogen contents and vertical distribution of N2O emission potentials in tropical peat soils transformed into oil palm plantations in Sarawak, Malaysia.
Lau, S.Y.L., Hashidoko, Y., Takahashi, N., Hatano, R., and Melling, L. - 2014
Journal of Agricultural Science and Technology B, 4(9), 691-700.
PDF
   
20.
Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers.
Maie, N., Sekiguchi, S., Watanabe, A., Tsutsuki, K., Yamashita, Y., Melling, L., Cawley, K.M., Shima, E., and Jaffe, R. - 2014
Journal of Sea Research, 91, 58-69.
PDF
   
21.
Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide emissions in oil palm plantations.
Sakata, R., Shimada, S., Arai, H., Yoshioka, N., Yoshioka, R., Aoki, H., Kimoto, N., Sakamoto, A., Melling, L., and Inubushi, K. - 2014
Soil Science and Plant Nutrition,61(1), 48-60.
PDF
   
22.
Composition of dissolved organic nitrogen in rivers associated with wetlands.
Watanebe, A., Tsutsuki, K., Inoue, Y., Maie, N., Melling, L., and Jaffe, R. - 2014
Science of the Total Environment, 493, 220-228.
PDF
   
23.
Soil microbial and root respiration from three ecosystems in tropical peatland of Sarawak, Malaysia.
Melling, L., Tan, C.S.Y., Goh, K.J., and Hatano, R. - 2013
Journal of Oil Palm Research, 25(1), 43-56.
PDF
   
24.
Greenhouse gas (GHG) emission from tropical peatland.
Melling, L. - 2013
The Planter, 89(1051), 725-730.
PDF
   
25.
Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years.
Kimura, S.D., Melling, L., and Goh, K.J. - 2012
Geoderma, 185, 1-5.
PDF
   
26.
Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates.
Watanabe, A., Moroi, K., Sato, H., Tsutsuki, K., Maie, N., Melling, L., and Jaffe, R. - 2012
Chemosphere,88(10), 1265-1268.
PDF
   
27.
Greenhouse gas exchange of tropical peatlands - A review.
Melling, L., and Henson, I.E. - 2011
Journal of Oil Palm Research, 23, 1087-1095.
PDF
   
28.
Burkholderia vietnamiensis isolated from root tissues of nipa palm (Nypa fruticans) in Sarawak, Malaysia.
Tang, S.Y., Hara, S., Melling, L., Goh, K.J., and Hashidoko, Y. - 2010
Bioscience, Biotechnology & Biochemistry, 74(9), 1972-1975.
PDF
   
29.
Effect of palm canopy on soil CO2 flux in an oil palm plantation on tropical peatland.
Lau, S.Y.L., Kho, F.W.L., Tan, C.S.Y., Sim, A.K.F., Tay, M.M. and Melling, L. - 2009.
Berita IKM, 97, 9-15.
PDF
   
30.
Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland.
Hashidoko, Y., Takakai. F., Toma, Y., Darung, U., Melling, L., Tahara, S., and Hatano. R. - 2008
Soil Biology & Biochemistry, 40(1), 116-125.
PDF
   
31.
Carbon flow and budget in a young mature oil palm agroecosystem on deep tropical peat.
Melling, L., Goh, K.J., Beauvais, C., and Hatano, R. - 2008
The Planter, 84(982), 21.
PDF
   
32.
Moisture retention curve of tropical sapric and hemic peat.
Melling, L., Hatano, R., and Goh, K.J. - 2007
Malaysian Journal of Civil Engineering, 19(1), 84-90.
PDF
   
33.
Nitrous oxide emission from three ecosystems in tropical peatland of Sarawak, Malaysia.
Melling, L., Hatano, R., and Goh, K.J. - 2007
Soil Science and Plant Nutrition, 53, 792-805.
PDF
   
34.
Short term effect of urea on CH4 flux under oil palm on tropical peatland in Sarawak, Malaysia.
Melling, L., Goh, K.J., and Hatano, R. - 2006
Soil Science and Plant Nutrition, 52, 788-792.
PDF
   
35.
Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia.
Melling, L., Hatano, R., and Goh, K.J. - 2005
TELLUS, 57B, 1-11.
PDF
   
36.
Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia.
Melling, L., Hatano, R., and Goh, K.J. - 2005
Soil Biology and Biochemistry, 37, 1445-1453.
PDF
   
37.
Global warming potential from soils in tropical peatland of Sarawak, Malaysia.
Melling, L., Hatano, R., and Goh, K.J. - 2005
PHYTON, 45, 275-284.
PDF